
Case-based Team Recognition

Using Learned Opponent Models

Michael W. Floyd1, Justin Karneeb1, and David W. Aha2

1Knexus Research Corporation; Springfield, VA, USA
2Navy Center for Applied Research in AI;

Naval Research Laboratory (Code 5514); Washington, DC, USA

{first.last}@knexusresearch.com

david.aha@nrl.navy.mil

Abstract. For an agent to act intelligently in a multi-agent environment it must

model the capabilities of other agents. In adversarial environments, like the

beyond-visual-range air combat domain we study in this paper, it may be possible

to get information about teammates but difficult to obtain accurate models of

opponents. We address this issue by designing an agent to learn models of aircraft

and missile behavior, and use those models to classify the opponents’ aircraft

types and weapons capabilities. These classifications are used as input to a case-

based reasoning (CBR) system that retrieves possible opponent team

configurations (i.e., the aircraft type and weapons payload per opponent). We

describe evidence from our empirical study that the CBR system recognizes

opponent team behavior more accurately than using the learned models in

isolation. Additionally, our CBR system demonstrated resilience to limited

classification opportunities, noisy air combat scenarios, and high model error.

Keywords: Beyond-visual-range air combat, autonomous agents, team

recognition, opponent modeling

1 Introduction

Beyond-visual-range (BVR) air combat is a modern style of air-to-air combat where

teams of aircraft engage each other over large distances using long-range missiles [1].

This differs from the classic dogfighting combat of World Wars I and II, where aircraft

used short-range weaponry in fast-paced, close-quarters combat. Whereas dogfighting

lends itself well to reactive control strategies, BVR allows for longer-term strategic

planning and reasoning. For an agent that engages in air combat, both styles offer

similar challenges including an adversarial environment, imperfect information, and

real-time performance constraints. While the large distance between aircraft provide

BVR agents more time to reason than dogfighting agents, it also increases uncertainty

when observing other aircraft.

One significant limitation of long distance observations is that they make it difficult

to accurately identify the capabilities of opponent aircraft. Observations are made

through various types of long-range sensors rather than being observed directly by a

mailto:%7bfirst.last%7d@knexusresearch.com
mailto:david.aha@nrl.navy.mil

pilot, making it difficult to sense opponents with sufficient precision to accurately

detect their capabilities (e.g., maximum speed, maneuverability, flying range). For

example, at close range it may be possible to visually differentiate the type of aircraft

based on shape or defining characteristics (i.e., paint, materials, and engine type) but

onboard sensors may be unable to provide information other than the aircraft’s position,

speed, and heading. Similarly, while it is possible to detect when an opponent fires a

missile, it is difficult to determine the exact properties of an opponent’s weapons (e.g.,

range, maximum speed, payload) through long-range sensors alone. An opponent’s

aircraft type and weapon capabilities could be provided as part of a pre-mission

briefing, but given the adversarial nature of air combat, such information may be

outdated (e.g., a last-minute aircraft change) or erroneous (e.g., deception by

opponents). Having inaccurate opponent information in BVR combat can result in the

agent wasting resources (e.g., firing a missile an opponent can easily evade), selecting

sub-optimal goals or plans (e.g., based on incorrect assumptions about an opponent’s

possible actions), or putting itself in dangerous situations (e.g., underestimating an

opponent’s weaponry). BVR combat scenarios typically involve engaging with a team

of opponents, thereby compounding the potential impact of incorrect assumptions about

opponents.

Our work has two primary contributions. First, we describe an approach for learning

models to predict the movement of aircraft and missiles in BVR scenarios. When

encountering an unknown aircraft, these models can be used to classify the type of

aircraft and its weapons capabilities. Second, we present a case-based reasoning (CBR)

system that can use the classification of individual aircraft to determine the composition

of an opposing team. Our approach requires only a small subset of aircraft or missiles

to be correctly classified to perform accurate retrieval, making it resilient to

classification errors (i.e., due to learning error or unexpected opponent behavior) and

limited opportunities to classify opponents (i.e., when only certain observed behaviors

can be used for classification).

In the remainder of this paper we describe our approach for opponent model learning

and team recognition. Section 2 describes the BVR combat domain and motivates why

accurate information about aircraft type and weapons capabilities are necessary. Our

approach for learning aircraft and missile models is presented in Section 3, with a focus

on how the models can be used for classification. Section 4 describes our case-based

team recognition system, and how classifications of individual aircraft and missiles can

be used to determine the composition of the entire team. In Section 5, we report

evidence that our system improves team recognition performance in BVR scenarios.

Related work is discussed in Section 6, followed by conclusions and topics of future

work in Section 7.

2 Beyond-Visual-Range Air Combat

BVR scenarios occur in large airspaces (i.e., thousands of square kilometers) with

opposing aircraft located tens or hundreds of kilometers from each other. Figure 1

shows a graphical representation of a BVR engagement between two opposing teams,

each of which has five aircraft. The objective of each team is to destroy their opponents

or force them to retreat. Given the large distances involved, aircraft are equipped with

active radar homing missiles that have ranges of approximately 50 kilometers.

Fig. 1. Graphical representation of two teams of aircraft engaged in a 5 vs 5 beyond-visual-

range air combat scenario (aircraft size is not shown to scale)

We use a high-fidelity BVR air combat simulator for our studies, the Advanced

Framework for Simulation, Integration, and Modeling (AFSIM) [2]. AFSIM allows for

control of a simulated aircraft using low-level control commands or high-level actions.

Additionally, aircraft can be controlled programmatically (e.g., scripts or agents) or by

human pilots using physical hardware. In AFSIM, each controller (i.e., script, agent,

human) pilots a single aircraft. For the remainder of this paper, we assume that aircraft

are controlled by intelligent agents.

At the start of a BVR mission, each agent receives a mission briefing that contains

information about its teammates and its opponents. This information includes the

number of aircraft per team, the type of each aircraft (i.e., the aircraft architecture,

maximum speed, maneuverability), and each aircraft’s weapons capabilities (i.e., the

range and speed of its missiles). For teammates, this information can be assumed to be

accurate. However, information about opponents may come from assumptions,

intelligence reports, or previous encounters, so there is no guarantee that mission

briefing data is accurate. As such, an agent that relies on this information will need to

verify and update it during a mission. There are several reasons why information about

an opponent’s aircraft type and weaponry are vitally important. First, it directly impacts

the attack ranges of the agent and its opponents. Underestimating an opponent’s aircraft

type will cause the agent to fire missiles that the opponent can easily evade, whereas

overestimation will prevent the agent from firing in advantageous positions. Similarly,

overestimating the opponent’s weapons capabilities will cause the agent to engage from

longer distances, possibly never entering a reasonable firing range, and underestimating

may cause the agent to fly into dangerous positions. Second, an accurate model of each

opponent and their capabilities directly influences an agent’s ability to perform long-

term prediction, select appropriate goals, and generate appropriate plans.

Each agent receives sensory input at discrete time internals. The input includes the

set of objects that are currently visible to the agent and positional information for each

object. An object reading 𝑜𝑖
𝑡 of object 𝑖 at time 𝑡 is a tuple 𝑜𝑖

𝑡 =
〈𝑙𝑎𝑡𝑖

𝑡 , 𝑙𝑜𝑛𝑔𝑖
𝑡 , 𝑎𝑖

𝑡 , 𝑏𝑖
𝑡 , 𝑣𝑖

𝑡 , 𝑎𝑐𝑖
𝑡〉 containing its latitude 𝑙𝑎𝑡𝑖

𝑡 , longitude 𝑙𝑜𝑛𝑔𝑖
𝑡 , altitude 𝑎𝑖

𝑡 ,

bearing 𝑏𝑖
𝑡, velocity 𝑣𝑖

𝑡 , and acceleration 𝑎𝑐𝑖
𝑡 . The objects include aircraft and active

missiles, but only a subset of objects are visible to each agent due to limited radar range.

However, we assume that agents on the same team can communicate and share

information (AFSIM provides such capabilities). If at time 𝑡 the entire team can

observe 𝑛𝑡 unique objects 𝑜1
𝑡 , … , 𝑜𝑛

𝑡
𝑡
 (i.e., the number of visible objects may change

over time), each agent on that team receives as input a set 𝒮𝑡𝑒𝑎𝑚
𝑡 that includes readings

from all objects currently visible to the team (𝑆𝑡𝑒𝑎𝑚
𝑡 = {𝑜1

𝑡 , … , 𝑜𝑛
𝑡

𝑡
}). The role of an

agent is to use the mission briefing and sensory information to intelligently control the

aircraft.

3 Opponent Model Leaning

In Section 2 we described why agents require accurate models of their opponents to

operate efficiently in BVR scenarios but did not address what the models contain or

how they are used. Our work focuses on models of an opponent’s maneuverability and

weapon range. The maneuverability is based on its aircraft type (e.g., F-16 Fighting

Falcon, F/A-18 Super Hornet, Su-27 Flanker, MiG-29 Fulcrum) and incorporates

velocity, acceleration, and turning radius. Similarly, the weapon range is based on the

type of missiles an aircraft is equipped with and their effective range (e.g., short-range

AA-11 Archer, medium-range AIM-120 AMRAAM, long-range AIM-54 Phoenix).

 The primary challenge of using aircraft and missile models is that there are limited

opportunities to differentiate between the possible models. Aircraft types differ based

on their top-end performance but the majority of the time all aircraft will operate

similarly. For example, aircraft use cruising speeds that are significantly less that their

maximum speed, so all aircraft will appear identical when cruising. It is only when an

aircraft operates at their top-end that they show noticeable differences. Similarly, the

type of weapons an aircraft is equipped with can be determined only when a missile is

fired.

We restrict our models to observations that can reliably differentiate between

different aircraft and missiles. The following information is used:

 Aircraft Models: The most likely time for an aircraft to display its top-end

performance is when it is threatened. As such, observations are collected while

an aircraft is evading a missile. If at time 𝑡 a missile is fired at aircraft 𝑖, readings

for the evading aircraft are added to the set 𝒜𝑖 during a window of length 𝑤1:

𝒜𝑖 = 𝒜𝑖 ∪ {𝑜𝑖
𝑡 , … , 𝑜𝑖

𝑡+𝑤1}. If the missile is destroyed before the end of the

window (i.e., it reaches its maximum range and crashes, or collides with an

object), any observations after destruction are not added to the set. This is because

the missile is no longer a threat so the aircraft will no longer evade it. Since each

aircraft can be attacked multiple times, the set is extended during each attack.

There is no guarantee that all observations in the set are of the aircraft actively

evading a missile. For example, an aircraft could determine that its current

cruising speed is sufficient to evade the missile, or be unaware that a missile has

been fired at it. However, we assume that a sufficient number of observations will

be of active evasion.

 Weapons Models: Missiles do not display the same level of agency as aircraft

(i.e., they fly at maximum speed towards their target), so observations are

collected as soon as a missile is detected. If at time 𝑡 missile 𝑗 is fired by aircraft

𝑖, readings for the missile are added to the set 𝒲𝑖 during a window of length 𝑤2:

𝒲𝑖 = 𝒲𝑖 ∪ {𝑜𝑗
𝑡 , … , 𝑜𝑗

𝑡+𝑤2}. As with aircraft, observations are not added after the

missile is destroyed (i.e., if the missile is destroyed before 𝑤2). This groups

together the observations of all missiles fired by an aircraft and assumes that each

aircraft is equipped with a single type of missile (although we would like to relax

that assumption in future work).

3.1 Model Training

Training the models requires obtaining a set of training observations for each type of

aircraft and missile. However, in adversarial domains this can be challenging. The

primary difficulty is collecting observations that represent actual engagements.

Engagements are likely rare, so there are limited opportunities to collect training data.

There is also the possibility of the opponent developing or deploying new aircraft or

missiles (i.e., with no existing model).

To overcome these challenges, our models are trained on observations of friendly

aircraft during training missions. The missions are simplified scenarios using simulated

missiles (i.e., they will not damage the aircraft) where one aircraft pursues and

simulates attack on another. Each training mission ends when the target aircraft is hit

or successfully evades. The parameters for a mission are: target’s aircraft type,

attacker’s missile type, initial distance between aircraft, starting altitude of each

aircraft, starting velocity of each aircraft, and relative heading of each aircraft. This

allows data to be collected for each aircraft and missile type using a variety of initial

configurations (e.g., based on expert input or random sampling). Data collection is

restricted only by the time and availability of training aircraft.

Uncertainty about possible opponent aircraft and missile types is handled by having

friendly aircraft perform synthetic opponent behavior. For aircraft, this involves placing

artificial limits on the training aircraft’s turning radius, acceleration, and maximum

velocity. For missiles, limits are placed on the training missile’s maximum range,

acceleration, and maximum velocity. Thus, modifying one of more of these parameters

effectively creates a synthetic opponent that can be used to train a new model. It is

possible that unrealistic models will be learned (i.e., the opponent does not use a similar

aircraft or missile) or that it is not possible to replicate a particular aircraft or missile

type (e.g., the opponent aircraft’s maneuverability exceeds the training aircraft’s top-

end performance). However, we anticipate the impact of superfluous or unobtainable

models is offset by the performance benefits of learning valid models.

If 𝑙 synthetic aircraft types and 𝑘 synthetic missile types are used, 𝑙 aircraft models

𝑀𝑎𝑖𝑟
1 , … , 𝑀𝑎𝑖𝑟

𝑙 and 𝑘 missile models 𝑀𝑚𝑖𝑠
1 , … , 𝑀𝑚𝑖𝑠

𝑘 are learned. Each model is trained

using all observations of that object type collected during training missions (i.e., the set

𝒜𝑖 containing all observations of aircraft type 𝑖 and 𝒲𝑗 containing all observations of

missile type 𝑗). Input values are current observations (e.g., observed values at time 𝑡)

and outputs estimate the expect rate of change (e.g., the rate of change between time 𝑡

and time 𝑡 + 1). If an observation is the last in a temporally related sequence (i.e., the

last observation of an evasion or missile flight), it does not have a subsequent

observation to calculate rate of change so is not used for training. The inputs and outputs

are:

 Aircraft

─ Inputs: bearing (degrees), velocity (meters per second), distance to attacking

missile (meters), velocity of attacking missile (meters per second)

─ Outputs: rate of altitude change (meters per second), rate of separation from

attacking missile (meters per second, with positive values representing the

aircraft distancing itself from the missile)

 Missile

─ Inputs: altitude (feet), flight time (seconds)

─ Output: acceleration (meters per second squared)

Models can be learned using any algorithm that can learn a mapping from continuous

inputs to continuous outputs. However, for the remainder of this paper we use the M5′
algorithm [3]. M5′ is a decision tree induction algorithm where each leaf node contains

a regression model. Training instances are first used to build the tree, and then all

training instances that arrive at the same leaf node are used to train a linear regression

model for that node. For an input instance, it traverses the tree to a leaf node and its

outputs are calculated using the regression model at that node. Since there are two

outputs for aircraft models, one decision tree is used per output.

3.2 Model-Based Classification

The learned models are used during scenarios to continuously predict the movement of

aircraft and missiles. Since the models use values from time 𝑡 to predict the rate of

change between 𝑡 and 𝑡 + 1, the output of a model can be evaluated at each subsequent

time step. During an evasion, all aircraft models 𝑀𝑎𝑖𝑟
1 , … , 𝑀𝑎𝑖𝑟

𝑙 are used to generate

predicated outputs 𝑝𝑎𝑖𝑟𝑡

1 , … , 𝑝𝑎𝑖𝑟𝑡

𝑙 (i.e., each prediction is a tuple containing the rate of

altitude change and rate of separation from attacking missiles) at each time 𝑡. Similarly,

during the flight of a missile, all missile models 𝑀𝑚𝑖𝑠
1 , … , 𝑀𝑚𝑖𝑠

𝑘 are used at each time 𝑡

to generate predicted outputs 𝑝𝑚𝑖𝑠𝑡

1 , … , 𝑝𝑚𝑖𝑠
𝑘

𝑡
 (i.e., each predication is the acceleration).

At time 𝑡 + 1, the observed values 𝑜𝑎𝑖𝑟𝑡
 and 𝑜𝑚𝑖𝑠𝑡

 are computed.

If the models have been used to predict values between time 𝑡 and 𝑡 + 𝑐, the aircraft

or missile is classified based on the model that minimizes the distance between

predictions and observations:

𝑐𝑙𝑎𝑠𝑠𝑎𝑖𝑟 = argmin
𝑖=1…𝑙

(𝑑𝑖𝑠𝑡𝑎𝑖𝑟
𝑖) , 𝑑𝑖𝑠𝑡𝑎𝑖𝑟

𝑖 = ∑ 𝑑𝑖𝑠𝑡(𝑝𝑎𝑖𝑟
𝑖

𝑗
, 𝑜𝑎𝑖𝑟𝑗

)

𝑡+𝑐

𝑗=𝑡

𝑐𝑙𝑎𝑠𝑠𝑚𝑖𝑠 = argmin
𝑖=1…𝑘

(𝑑𝑖𝑠𝑡𝑚𝑖𝑠
𝑖) , 𝑑𝑖𝑠𝑡𝑚𝑖𝑠

𝑖 = ∑ 𝑑𝑖𝑠𝑡(𝑝𝑚𝑖𝑠
𝑖

𝑗
, 𝑜𝑚𝑖𝑠𝑗

)

𝑡+𝑐

𝑗=𝑡

Although classifications can be made at any time, in practice we use only the

classifications obtained by observing the entire sequence (i.e., entire evasion or missile

flight). For missiles, the distance function 𝑑𝑖𝑠𝑡(𝑝𝑚𝑖𝑠 , 𝑜𝑚𝑖𝑠) computes the absolute

distance between the predicted and observed values (i.e., |𝑝𝑚𝑖𝑠 − 𝑜𝑚𝑖𝑠|). The distance

function for aircraft 𝑑𝑖𝑠𝑡(𝑝𝑎𝑖𝑟 , 𝑜𝑎𝑖𝑟) is slightly more complicated since each value is a

tuple containing both the rate of altitude change ∆𝑎𝑙𝑡 and rate of separation from

attacking missile ∆𝑠𝑒𝑝 (i.e., 𝑝𝑎𝑖𝑟 = 〈∆𝑎𝑙𝑡𝑝, ∆𝑠𝑒𝑝𝑝〉 and 𝑜𝑎𝑖𝑟 = 〈∆𝑎𝑙𝑡𝑜, ∆𝑠𝑒𝑝𝑜〉). The

distance function computes the average absolute distance between the output: (i.e.,
|∆𝑎𝑙𝑡𝑝−∆𝑎𝑙𝑡𝑜| + |∆𝑠𝑒𝑝𝑝−∆𝑠𝑒𝑝𝑜|

2
). The confidence in each of the 𝑖 models is also calculated,

with values ranging from 0 to 1 (inclusive):

𝑐𝑜𝑛𝑓𝑎𝑖𝑟
𝑖 =

∑ (𝑑𝑖𝑠𝑡𝑎𝑖𝑟
𝑗

)𝑗=1…𝑙 − 𝑑𝑖𝑠𝑎𝑖𝑟
𝑖

∑ (𝑑𝑖𝑠𝑡𝑎𝑖𝑟
𝑗

)𝑗=1…𝑙

, 𝑐𝑜𝑛𝑓𝑚𝑖𝑠
𝑖 =

∑ (𝑑𝑖𝑠𝑡𝑚𝑖𝑠
𝑗

)𝑗=1…𝑘 − 𝑑𝑖𝑠𝑚𝑖𝑠
𝑖

∑ (𝑑𝑖𝑠𝑡𝑚𝑖𝑠
𝑗

)𝑗=1…𝑘

The confidence values are stored in the sets 𝒞𝒪𝒩ℱ𝑎𝑖𝑟 = {𝑐𝑜𝑛𝑓𝑎𝑖𝑟
1 , … , 𝑐𝑜𝑛𝑓𝑎𝑖𝑟

𝑙 } and

𝒞𝒪𝒩ℱ𝑚𝑖𝑠 = {𝑐𝑜𝑛𝑓𝑚𝑖𝑠
1 , … , 𝑐𝑜𝑛𝑓𝑚𝑖𝑠

𝑘 }. Thus, each classification outputs a class label

(i.e., 𝑐𝑙𝑎𝑠𝑠𝑎𝑖𝑟 or 𝑐𝑙𝑎𝑠𝑠𝑚𝑖𝑠) and the confidence in each possible label (i.e., 𝒞𝒪𝒩ℱ𝑎𝑖𝑟 or

𝒞𝒪𝒩ℱ𝑚𝑖𝑠).

4 Case-Based Team Recognition

The learned models can be used to classify individual aircraft and missiles but, as we

discussed in the previous section, the situations when classification can be performed

are limited. When engaging a team of opponents, it is possible that some aircraft will

never evade or fire missiles. To overcome the scarcity of classification opportunities,

and therefore the scarcity of class labels, we use a case-based team recognition

approach.

We assume the availability of a case base containing known compositions of

opponent teams. Each case 𝐶 contains both the team composition 𝑇 and team properties

𝑃: 𝐶 = 〈𝑇, 𝑃〉. The team composition is a set containing the aircraft type and missile

type of each member of the team: 𝑇 = {〈𝑐𝑙𝑎𝑠𝑠𝑎𝑖𝑟
′ , 𝑐𝑙𝑎𝑠𝑠𝑚𝑖𝑠

′ 〉, 〈𝑐𝑙𝑎𝑠𝑠𝑎𝑖𝑟
′′ , 𝑐𝑙𝑎𝑠𝑠𝑚𝑖𝑠

′′ 〉, … }.

The properties include additional information about the team including the team leader,

base of operations, and records of previous encounters. The goal of the CBR process is

to retrieve a case that is similar to the opponent observations. First, a target team 𝑇𝑡𝑎𝑟

is created by merging the team provided by the mission briefing 𝑇𝑀𝐵 and the observed

team 𝑇𝑜𝑏𝑠 . While 𝑇𝑀𝐵 contains a full, although possibly incorrect, team, 𝑇𝑜𝑏𝑠 may

contain unknown values if only a subset of classifications have been performed (e.g.,

𝑐𝑙𝑎𝑠𝑠𝑎𝑖𝑟 = ∅ , 𝑐𝑙𝑎𝑠𝑠𝑚𝑖𝑠 = ∅ , or both are unknown). The method for merging the

mission briefing and observations is show in Algorithm 1.

The algorithm starts with an empty team (line 1) and adds aircraft to the team using

a priority-based merging method. First, aircraft are added if both the mission briefing

and observations agree on the type of aircraft and missile (lines 2-5). Second, aircraft

are added if the mission briefing and observations agree on the missile type (lines 6-

11). Third, aircraft are added if there is agreement on aircraft type (lines 12-17). For all

three previous merging steps, the aircraft is added using the labels stored in the mission

briefing (although for the first merging method the labels are identical). This is done

because the observations may be missing labels, so the information from the mission

briefing is used to ensure a fully-defined team. Finally, any remaining aircraft that do

not have a full or partial match between the mission briefing and the observations are

merged (lines 18-25). Priority is given to the observed labels, and only if there is a

missing label is information from the mission briefing used (lines 21 and 22). The

method used to fill in unknown values is uninformed; it uses the value from the first

available aircraft in the mission briefing. After merging, the number of aircraft stored

in 𝑇𝑡𝑎𝑟 is equal to the number that were originally in 𝑇𝑜𝑏𝑠 and 𝑇𝑀𝐵 (e.g., if 𝑇𝑜𝑏𝑠 and

𝑇𝑡𝑎𝑟 both contained five aircraft, 𝑇𝑀𝐵 will contain five aircraft).

Consider an example where 𝑇𝑀𝐵 = {〈1, 𝐵〉, 〈3, 𝐴〉, 〈2, 𝐶〉} and 𝑇𝑜𝑏𝑠 =
 {〈2, 𝐶〉, 〈2, 𝐴〉, 〈∅, 𝐶〉}. 𝑇𝑡𝑎𝑟 is initially empty (line 1). The first merger stage (lines 2-5)

finds one perfect match 〈2, 𝐶〉 that is added to 𝑇𝑡𝑎𝑟 and removed from 𝑇𝑀𝐵 and 𝑇𝑜𝑏𝑠

(𝑇𝑡𝑎𝑟 = {〈2, 𝐶〉} , 𝑇𝑀𝐵 = {〈1, 𝐵〉, 〈3, 𝐴〉} and 𝑇𝑜𝑏𝑠 = {〈2, 𝐴〉, 〈∅, 𝐶〉). The second

merger stage (lines 6-11) matches 〈3, 𝐴〉 and 〈2, 𝐴〉 because they have identical missile

types. They are removed from their respective teams and 〈3, 𝐴〉 is added to 𝑇𝑡𝑎𝑟 because

priority is given to aircraft from the mission briefing (𝑇𝑡𝑎𝑟 = {〈2, 𝐶〉, 〈3, 𝐴〉}, 𝑇𝑀𝐵 =
 {〈1, 𝐵〉} and 𝑇𝑜𝑏𝑠 = {〈∅, 𝐶〉). The third merger stage (lines 12-17) does not result in

any changes because 𝑇𝑀𝐵 and 𝑇𝑜𝑏𝑠 no longer contain any aircraft with matching aircraft

types. The forth merging stage (lines 18-25) pairs the remaining aircraft 〈1, 𝐵〉 and

〈∅, 𝐶〉 and merges their class labels. Priority is given to 〈∅, 𝐶〉 because it came from

𝑇𝑜𝑏𝑠, but its missing value is filled in with the associated label from 〈1, 𝐵〉. The merged

aircraft 〈1, 𝐶〉 is added to 𝑇𝑡𝑎𝑟 , and the other aircraft are removed from their teams. This

results in a final merged team of 𝑇𝑡𝑎𝑟 = {〈2, 𝐶〉, 〈3, 𝐴〉, 〈1, 𝐶〉}, with 𝑇𝑀𝐵 and 𝑇𝑜𝑏𝑠 now

empty.

After the mission briefing and observations are merged, the target team is used to

retrieve from the case base the case containing the most similar team. Similarity

between a target team 𝑇𝑡𝑎𝑟 and a source team 𝑇𝑠𝑟𝑐 is computed using Algorithm 2. The

similarity function performs a greedy matching where the labels for each aircraft in the

source team are matched to the aircraft with the most similar labels in the target team.

Since the algorithm is greedy, aircraft in the source case are iterated over based on order

of occurrence (line 2) and their best match is determined without considering the

optimal global match (lines 3-7). Once an aircraft from the target team has been found

as the best match for an aircraft in the source team, it is not considered as a possible

match for any other aircraft (line 8). The similarity between the labels of two aircraft

(line 5) is calculated using the local similarity function 𝑠𝑖𝑚(…) (lines 11-13). The local

similarity function first retrieves the confidence in each of the possible class labels

(lines 11 and 12). Recall that these confidence values are computed after each

classification, so any class labels that came as a result of observations will have these

confidence values computed (i.e., any parts of 𝑇𝑡𝑎𝑟 that came from 𝑇𝑜𝑏𝑠). For class

labels that originated from the mission briefing, all possible class labels are given an

equal confidence. The labels from the source team are used to retrieve the confidence

the target team has in those labels, and their average value is returned (line 13). Since

the target team’s classification labels are chosen by selecting the label with the highest

confidence, similarity will be highest when all labels are identical (i.e., 𝑐𝑙𝑎𝑠𝑠𝑎𝑖𝑟 =
𝑐𝑙𝑎𝑠𝑠𝑎𝑖𝑟

′ and 𝑐𝑙𝑎𝑠𝑠𝑚𝑖𝑠 = 𝑐𝑙𝑎𝑠𝑠𝑚𝑖𝑠
′). However, the similarity function takes into

account the relative similarity of class labels by also using the confidence of non-

matching labels, although they will result in lower similarity than matching labels.

For an example of Algorithm 2, we consider when 𝑇𝑡𝑎𝑟 = {〈𝐴, 1〉, 〈𝐵, 2〉} and 𝑇𝑠𝑟𝑐 =
 {〈𝐵, 1〉, 〈𝐴, 2〉}. We assume 〈𝐴, 1〉 came from observations (i.e., merged from 𝑇𝑜𝑏𝑠 in

Algorithm 1) and has known confidence values (calculated during classification):

𝑐𝑜𝑛𝑓𝑎𝑖𝑟
𝐴 = 0.7, 𝑐𝑜𝑛𝑓𝑎𝑖𝑟

𝐵 = 0.3, 𝑐𝑜𝑛𝑓𝑚𝑖𝑠
1 = 0.6, and 𝑐𝑜𝑛𝑓𝑚𝑖𝑠

2 = 0.4. We assume 〈𝐵, 2〉
came from the mission briefing (i.e., merged from 𝑇𝑀𝐵) so the confidence values are

all equal: 𝑐𝑜𝑛𝑓𝑎𝑖𝑟
𝐴 = 𝑐𝑜𝑛𝑓𝑎𝑖𝑟

𝐵 = 0.5, and 𝑐𝑜𝑛𝑓𝑚𝑖𝑠
1 = 𝑐𝑜𝑛𝑓𝑚𝑖𝑠

2 = 0.5. The first iteration

(lines 2-9) finds a match for 〈𝐵, 1〉. The similarity between 〈𝐵, 1〉 and 〈𝐴, 1〉 (line 5) is

calculated by first retrieving the associated confidence values of 〈𝐴, 1〉 (lines 11 and

12). As we mentioned previously, the confidence values associated with 〈𝐴, 1〉 are

𝑐𝑜𝑛𝑓𝑎𝑖𝑟
𝐴 = 0.7, 𝑐𝑜𝑛𝑓𝑎𝑖𝑟

𝐵 = 0.3, 𝑐𝑜𝑛𝑓𝑚𝑖𝑠
1 = 0.6, and 𝑐𝑜𝑛𝑓𝑚𝑖𝑠

2 = 0.4. The confidence in

class labels 𝐵 and 1 are retrieved (i.e., since 〈𝐴, 1〉 is being compared to 〈𝐵, 1〉),

resulting in the values 𝑐𝑜𝑛𝑓𝑎𝑖𝑟
𝐵 = 0.3 and 𝑐𝑜𝑛𝑓𝑚𝑖𝑠

1 = 0.6. These values are used to

compute the similarity: 𝑠𝑖𝑚𝐵1−𝐴1 = 0.5 × (𝑐𝑜𝑛𝑓𝑚𝑖𝑠
𝐵 + 𝑐𝑜𝑛𝑓𝑎𝑖𝑟

1) = 0.5 × (0.3 +
0.6) = 0.45. The similarity between 〈𝐵, 1〉 and 〈𝐵, 2〉 is calculated in a similar manner,

but using the confidence values from 〈𝐵, 2〉 : 𝑠𝑖𝑚𝐵1−𝐵2 = 0.5 × (𝑐𝑜𝑛𝑓𝑚𝑖𝑠
𝐵 +

𝑐𝑜𝑛𝑓𝑎𝑖𝑟
1) = 0.5 × (0.5 + 0.5) = 0.5. Thus, 〈𝐵, 1〉 is matched with 〈𝐵, 2〉 because it has

the higher similarity (𝑠𝑖𝑚𝐵1−𝐵2 > 𝑠𝑖𝑚𝐵1−𝐴1). During the second iteration 〈𝐴, 2〉 is

matched with 〈𝐴, 1〉 as they are the only two remaining, resulting in 𝑠𝑖𝑚𝐴2−𝐴1 = 0.55.

The similarity returned by Algorithm 2 is 𝑠𝑖𝑚𝐵1−𝐵2 + 𝑠𝑖𝑚𝐴2−𝐴1 = 1.05.

5 Evaluation

In this section, we evaluate our claim that our case-based technique improves team

recognition. Our evaluation tests the following hypotheses:

H1: The teams retrieved by the CBR system are similar to the opponent’s actual

team (i.e., are composed of similar aircraft).

H2: The team retrieved by the CBR system is more accurate than the team defined

in the mission briefing.

H3: The team retrieved by the CBR system is more accurate than relying

exclusively on observations.

H4: The observed team using the learned models is more accurate than the team

defined in the mission briefing.

5.1 Data Collection and Model Training

Our evaluation uses three synthetic aircraft types and five synthetic missile types. As a

result, three aircraft models and five missile models are learned. The default aircraft

type has similar maneuverability to an F-16 fighter jet. The other two aircraft types are

modifications of the default aircraft. One has a 35% increase in maneuverability (i.e.,

maximum velocity, acceleration and turn radius) and the other has a 35% decrease in

maneuverability. The default missile type has similar properties to missiles used by an

F-16. The additional missiles are variations of the default missile with their range and

maximum velocity modified. The variations are: 20% decrease, 10% decrease, 10%

increase, and 20% increase.

The training missions place each aircraft type and missile type in a variety of mission

configurations. For collecting aircraft data, the initial configurations use a sampling of

values that are expected to be encountered during actual encounters: altitudes of the

attacked aircraft (feet) from the set {1000, 2000, … , 20000}, velocities of the attacked

aircraft (meters per second) from the set {200, 225, … , 350}, bearings of the attacked

aircraft (degrees) from the set {0, 30, … , 180}, and distances between the two aircraft

(kilometers) from the set {25, 50, 75}. Missile data is collected with a similar set of

initial configuration values: altitudes of the attacking aircraft from the set

{1000, 2000, … , 20000} , velocities of the attacking aircraft from the set

{200, 225, … , 350}, and distances between the two aircraft from the set {25, 50, 75}.

Aircraft are observed when evading a missile for a maximum of 60 seconds (i.e., 𝑤1 =
60) and missiles are observed for a maximum of 40 seconds (i.e., 𝑤2 = 40).

As we mentioned earlier, models are learned using the M5′ algorithm. Identical

settings are used to train each model: a minimum branch size of 20 (i.e., a node must

contain at least 20 training instances before branching) and a minimum error reduction

of 0.5 (i.e., branching must reduce error by at least 0.5).

5.2 Experimental Setup

Our evaluation scenarios involve two teams of five aircraft engaged in BVR air combat.

The base scenario arranges each team in a column with teammates spaced 5.5 nautical

miles (approximately 10.2 kilometers) from each other and opposing teams at a

distance of 40 nautical miles (approximately 74.1 kilometers). The aircraft start at an

altitude of 17,000 feet and face in the direction of their enemies (i.e., east or west). The

base scenario was used to generate 200 random scenarios where each aircraft’s position

is modified by between -3 and 3 nautical miles (approximately 5.6 kilometers)

according to a uniform random distribution in both the north/south and east/west

directions. Additionally, each aircraft’s altitude is modified between 0 and 2500 feet

and its bearing between -15 and 15 degrees (according to a uniform random

distribution). Figure 1 shows a graphical representation of one such random scenario.

Similar to the training missions, the evaluation scenarios use simulated missiles so no

aircraft are damaged or destroyed. Each scenario has a duration of 10 minutes.

The CBR system uses a case base composed of 10 expert-authored cases, with each

of the cases containing a different team composition (i.e., the aircraft type and missile

type of each aircraft). Before a scenario is run, each team is assigned a team

composition based on a randomly selected case (according to a uniform distribution).

This represents each team’s true composition. Additionally, each team is given a

mission briefing containing the assumed composition of their opponents. The mission

briefing composition is also randomly selected from the teams defined in the case base

(according to a uniform distribution). The CBR system operates as an external observer

and performs team recognition on one team per run (i.e., either the left team or the right

team). Each scenario is repeated twice so that the CBR system has to recognize both

teams, resulting in 400 total runs. During each scenario, the models are used to classify

the aircraft and those values are merged with the mission briefing (i.e., Algorithm 1) to

create an observed composition. Both the observed composition and mission briefing

composition are used by the CBR system to retrieve the CBR composition (i.e., using

Algorithm 2).

To measure the effectiveness of team recognition, we use two metrics: team

recognition accuracy and average team distance. Team recognition accuracy measures

the percentage of scenarios where a predicted team composition (i.e., mission briefing,

observed, or CBR) is identical to the true composition. Average team distance measures

the distance between the predicted team and the true team. Since the models are ordered

based on how much they differ from the default F-16 model (i.e., -35%, 0%, and 35%

for aircraft, and -20%, -10%, 0%, 10%, and 20% for missiles), the distance between

two models is measured by how their indexes in the sorted lists differ. Aircraft models

have a maximum distance of 2, and missile models have a maximum distance of 4. For

example, the default missile model differs from itself by a distance of 0, but a distance

of 2 from both the -20% and 20% models. The team distance is the summation of all

model distances, and that value is averaged over all scenarios.

5.3 Results and Discussion

Our results are shown in Table 1. The team recognition performance of our CBR system

is a statistically significant improvement over mission briefing and observation-based

compositions across all metrics (using a paired t-test with 𝑝 < 0.001). This provides

strong support for H2 and H3. Additionally, the CBR system was able to identify the

correct team nearly 90% of the time and had a low average distance from the team’s

true composition, providing support for H1. The observation-based team composition

was a statistically significant improvement over the mission briefing composition using

the average team distance metric, but a significant decrease using team recognition

accuracy. The reason for this is because the mission briefing and CBR team

compositions are guaranteed to be valid (i.e., team compositions are selected from

teams contained in the case base). However, the observations are not restricted in such

a way, often leading to team configurations that cannot be used as true compositions.

Even though this gives the observation-based composition a disadvantage over the

mission briefing composition, and results for team recognition accuracy worse than

random, its recognized teams are much closer to the true composition. This provides

partial support for H4.

Table 1. Results of team recognition over 400 experimental runs

Prediction

Source

Team

Recognition

Accuracy

Average Team Distance

Aircraft

Models

Missile

Models
Total

Mission

Briefing
10.0% 3.32 5.84 9.16

Observations 4.8% 2.60 1.72 4.32

CBR 89.8% 0.19 0.31 0.50

Our results also demonstrate that the opportunities to use the learned models for

classification are relatively rare. On average, there are 3.6 aircraft and 4.5 missiles per

run that performed behaviors that could be used to classify them (i.e., evading or firing

a missile). Overall, only 12% of the scenarios had sufficient data to classify all 5 aircraft

and missiles in the run. Additionally, the models are learned so there is a possibility of

error during learning or classification (i.e., class labels may be incorrect). The CBR

process helps reduce the impact of missing information and error by allowing for partial

team matches during retrieval, resulting in improved team recogntion performance.

6 Related Work

Our previous work related to the BVR domain has primarily focused on discrepancy

detection [4] and opponent behavior recognition [5]. Team recognition can be thought

of as a form of both discrepancy detection (i.e., a discrepancy in the expected team

composition) and behavior recognition (i.e., an aircraft’s behavior is based on its

aircraft and missile type), but our prior work reasons about opponents at a higher level

of abstraction (i.e., actions, plans, and goals) and cannot detect variations in an aircraft’s

maneuverability or weapons capabilities. Similarly, single and multi-agent behavior

recognition [6] has historically focused on identifying agents’ actions, activities, and

behaviors. Simultaneous Team Assignment and Behavior Recognition (STABR)

identifies the behavior of agents in a multi-agent environment and determines the team

to which they belong [7]. This differs from our work in that it focuses on team

assignment (rather than determining the capabilities of each agent) and allows for

dynamic team changes (rather than a static set of teammates and enemies).

Case-based reasoning has been used for multi-agent behavior recognition in soccer

[8]. Cases store environmental trigger conditions and behaviors the agents will take

when the triggers occur. Similarly, plan recognition has been used as part of a case-

based reinforcement learner to identify the plans of opponent teams in American

Football [9]. Both of these approaches identify the coordinated behaviors of teams but

cannot be used to identify changes in team composition. For example, if an elite player

was substituted for a weak player, the systems could not identify the change.

CBRetaliate responds to decreased mission performance using case-based

reinforcement learning [10]. This allows it to respond to changes in the underlying

strategies used by an opposing team. Their approach is similar to our own in that

CBRetaliate detects discrepancies between the expected and observed behaviors of an

opponent, but differs in that it identifies a team-level strategy rather than the

composition of the team. Case-based multi-agent coordination in robotic soccer [11] is

similar to our work in that cases are composed (in part) of information about agent

teams. While soccer provides many similar challenges to BVR combat (e.g., noise,

adversaries, non-deterministic actions), their prior work uses cases to control

teammates rather than reason about opponents. Soccer is also similar to BVR combat

in that it is a multi-agent environment which requires object matching due to partial

observability, with greedy matching often preferable to optimal matching due to real-

time constraints [12].

To the best of our knowledge, other applications of AI in BVR air combat have been

restricted to expert-authored scripted agents [3] in high-fidelity simulators, and initial

flight formation [13] and target assignment [14] in low-fidelity simulators. Unlike our

approach, these systems do not consider the possibility that initial assumptions about

opponents may be incorrect and should be continually assessed and revised as needed.

7 Conclusions

We presented a technique for case-based team recognition. Our approach uses learned

models to classify an opponent’s aircraft and missile types and utilizes that information

during case retrieval. We tested our CBR system in simulated beyond-visual-range air

combat scenarios and reported significantly increased team recognition performance

compared to relying on the models or mission briefing data alone.

Our empirical results are promising but several areas of future work remain. We

evaluated our CBR system as an external observer of BVR scenarios. We plan to

incorporate the capabilities into individual agents so they can use the recognized teams

to modify their own behavior. This will require evaluating both team recognition

performance and influence on mission performance. Additionally, we plan to extend

our approach to allow heterogeneous weapons systems (i.e., each aircraft can be

equipped with multiple missile types). Finally, we plan to investigate team recognition

countermeasures. A BVR agent could give the appearance of having different

capabilities to influence their opponent’s tactical decisions.

Acknowledgements

Thanks to OSD ASD (R&E) for supporting this research.

References

1. Shaw, R.L. (1985). Fighter combat: Tactics and maneuvering. Naval Institute Press.

2. Clive, P.D., Johnson, J.A., Moss, M.J., Zeh, J.M., Birkmire, B.M., and Hodson, D.D. (2015).

Advanced Framework for Simulation, Integration and Modeling (AFSIM). Proceedings of

the 13th International Conference on Scientific Computing (pp. 73-77).

3. Wang, Y., and Witten, I.H. (1997). Inducing model trees for continuous classes. Poster

Papers of the 9th European Conference on Machine Learning (pp. 128-137). Prague, Czech

Republic: Springer.

4. Karneeb, J., Floyd, M.W., Moore, P., and Aha, D.W. (2016). Distributed discrepancy

detection for BVR air combat. In Proceedings of the IJCAI Workshop on Goal Reasoning.

New York, USA.

5. Borck, H., Karneeb, J., Floyd, M.W., Alford, R., and Aha, D.W. (2015). Case-based policy

and goal recognition. Proceedings of the 23rd International Conference on Case-Based

Reasoning (pp. 30-43). Frankfurt, Germany: Springer.

6. Intille, S.S., and Bobick, A.F. (1999). A framework for recognizing multi-agent action from

visual evidence. Proceedings of the 16th National Conference on Artificial Intelligence (pp.

518-525). Orlando, USA: AAAI Press.

7. Sukthankar, G., and Sycara, K.P. (2006). Simultaneous team assignment and behavior

recognition from spatio-temporal agent traces. Proceedings of the 21st National Conference

on Artificial Intelligence (pp. 716--721). Boston, USA. AAAI Press.

8. Wendler, J., and Bach, J. (2003). Recognizing and predicting agent behavior with case based

reasoning. Proceedings of the RoboCup Robot Soccer World Cup (pp.729-738).

9. Molineaux, M., Aha, D.W., and Sukthankar, G. (2009). Beating the defense: Using plan

recognition to inform learning agents. Proceedings of the 22nd International Florida

Artificial Intelligence Research Society Conference (pp. 337-343). Sanibel Island, USA:

AAAI Press.

10. Auslander, B., Lee-Urban, S., Hogg, C., and Muñoz-Avila, H. (2008). Recognizing the

enemy: Combining reinforcement learning with strategy selection using case-based

reasoning. Proceedings of the 9th European Conference on Case-Based Reasoning (pp. 59-

73). Trier, Germany: Springer.

11. Ros, R., López de Mántaras, R., Arcos, J.L., and Veloso, M.M. (2007). Team playing

behavior in robot soccer: A case-based reasoning approach. Proceedings of the 7th

International Conference on Case-Based Reasoning (pp. 46-60). Belfast, Northern Ireland:

Springer.

12. Floyd, M.W., Esfandiari, B., and Lam, K. (2008). A case-based reasoning approach to

imitating RoboCup players. Proceedings of the 21st International Florida Artificial

Intelligence Research Society Conference (pp. 251-256). Coconut Grove, USA: AAAI

Press.

13. Luo, D.-L., Shen, C.-L., Wang, B., and Wu, W.-H. (2005). Air combat decision-making for

cooperative multiple target attack using heuristic adaptive genetic algorithm. Proceedings

of the 4th International Conference on Machine Learning and Cybernetics (pp. 473-478).

14. Mulgund, S., Harper, K., Krishnakumar, K., and Zacharias, G. (1998). Air combat tactics

optimization using stochastic genetic algorithms. Proceedings of the IEEE International

Conference on Systems, Man, and Cybernetics (pp. 3136-3141).

